How to climb a wind turbine

Wind technicians up a wind turbine

Learn about what it takes to climb a wind turbine

Climbing a wind turbine is a specialized task that requires training, safety equipment, and adherence to strict protocols due to the height and complexity of the structures. Here’s how it is typically done:

1. Preparation and Training

  • Certification: Workers must have the necessary certifications, such as Global Wind Organization (GWO) training, which covers working at heights, first aid, fire awareness, and manual handling.
  • Health and Safety Checks: Climbers must undergo health checks to ensure they are fit for working at heights. Safety briefings and risk assessments are also conducted before any climb.

2. Personal Protective Equipment (PPE)

  • Harness and Fall Arrest System: Workers wear a full-body harness attached to a fall arrest system. This system includes a lanyard or self-retracting lifeline connected to an anchor point on the turbine.
  • Helmet and Gloves: A safety helmet protects against head injuries, and gloves provide a secure grip while climbing.
  • Climbing Suit and Footwear: A climbing suit, often flame-resistant, and sturdy, non-slip boots are worn to protect against environmental hazards and ensure a good grip.

3. Climbing the Turbine

  • Internal Ladder: Most wind turbines have an internal ladder running up the tower. This ladder is equipped with a vertical safety rail or cable system to which climbers attach their fall arrest lanyard.
  • Climbing in Stages: Climbers typically ascend in stages, resting at intermediate platforms. These platforms also serve as emergency exit points in case of fatigue or other issues.
  • Self-Retracting Lifeline: This device automatically adjusts the length of the lanyard, preventing slack and minimizing the risk of falling.

4. Using the Elevator (If Available)

  • Service Lifts: Some wind turbines are equipped with service lifts (small elevators) that can carry workers part or all of the way up the tower, reducing the physical strain of climbing.
  • Lift Safety Protocols: When using the lift, workers must adhere to safety protocols, including checking the lift’s condition and following weight limits.

5. Reaching the Nacelle

  • Final Ascent: The last part of the climb may involve transitioning from the internal ladder to access the nacelle, the housing that contains the gearbox, generator, and other critical components.
  • Securing in Place: Once at the nacelle, workers secure themselves with additional lanyards to ensure they remain safely tethered while performing tasks.

6. Working in the Nacelle and on the Blades

  • Confined Space Procedures: The nacelle can be a confined space, requiring specific procedures to ensure safe movement and ventilation.
  • Blade Access: For work on the blades, technicians may use rope access techniques, hanging from the nacelle, or they might use platforms or cranes for maintenance tasks.
  • Continuous Monitoring: Workers remain in constant communication with the ground team, and their condition is monitored to ensure safety.

7. Descent

  • Controlled Descent: After completing their work, climbers carefully descend using the same ladder or lift system, ensuring they remain attached to the fall arrest system at all times.
  • Emergency Descent: In case of an emergency, climbers can use an emergency descent device that allows them to rappel down the tower safely.

8. Post-Climb Procedures

  • Equipment Check: After the climb, workers inspect their equipment for any damage and ensure it is in good condition for future use.
  • Reporting and Debriefing: Workers complete any necessary reports and participate in a debriefing to discuss any issues encountered during the climb and ensure continuous safety improvements.

Safety Considerations

  • Wind Conditions: Climbing is typically restricted or halted in high winds or severe weather conditions, as these can make the climb more dangerous.
  • Emergency Preparedness: Workers are trained in emergency procedures, including self-rescue and the use of emergency descent devices.
  • Regular Training: Regular refreshers in safety protocols and climbing techniques are necessary to keep certifications current and ensure safety standards are maintained.

Climbing a wind turbine is a highly skilled task that prioritizes safety at every step, from preparation and equipment to the climb itself and subsequent descent.

Book a Course

Interested in world-class training for working on wind turbines? Click the button to book your next course.

How to make money from wind turbines?

How to make money from wind turbines?

Wind Farms - How do they actually return a profit?

How to make money from wind turbines? A question we get asked a lot, so here goes…

Wind farms are large-scale installations of wind turbines that generate electricity by harnessing the kinetic energy of the wind. These farms can be located onshore (on land) or offshore (in bodies of water), and they are designed to produce significant amounts of renewable energy for distribution to the electrical grid. Wind farms are a crucial part of the global shift towards renewable energy, with countries worldwide investing in wind energy as a means to reduce dependence on fossil fuels, enhance energy security, and meet climate goals. They play a significant role in the energy transition, contributing to cleaner and more sustainable energy systems.

Building a wind farm is a significant endeavor requiring careful planning, substantial investment, and ongoing management. The process is complex but vital for harnessing renewable energy and contributing to a sustainable energy future. But with such huge amounts of resource required to build and operate a wind farm, including staff, training, maintenance, equipment and repairs, how do companies get a return on their investment?

Companies make money from wind energy through several revenue streams, all of which are tied to the generation and sale of electricity, incentives, and related services.

Here’s how it works:

1. Selling Electricity

  • Power Purchase Agreements (PPAs): Wind energy companies enter into long-term contracts with utilities, businesses, or governments to sell electricity at a fixed price. These agreements provide a steady income stream and reduce financial risk for both parties.
  • Wholesale Market Sales: In some cases, wind energy producers sell electricity directly on the wholesale electricity markets, where prices can fluctuate based on demand and supply conditions.

2. Renewable Energy Certificates (RECs)

  • Selling RECs: Wind energy companies generate Renewable Energy Certificates (RECs) for each megawatt-hour (MWh) of electricity produced. These certificates can be sold to utilities or corporations to help them meet renewable energy mandates or voluntary sustainability goals. RECs provide an additional revenue stream independent of the electricity itself.

3. Government Incentives and Subsidies

  • Production Tax Credits (PTCs): In countries like the U.S., wind energy companies can benefit from tax credits based on the amount of electricity they produce. The Production Tax Credit (PTC) provides a per-kilowatt-hour tax credit for the first ten years of a wind farm’s operation.
  • Investment Tax Credits (ITCs): Some wind projects might qualify for Investment Tax Credits, which allow a percentage of the cost of developing a wind farm to be deducted from taxes.
  • Grants and Loans: Governments sometimes offer grants, low-interest loans, or other financial incentives to support the development of wind energy projects.

4. Selling Carbon Offsets

  • Carbon Credits: Wind energy projects reduce carbon emissions, and companies can sell carbon credits generated from these reductions. Corporations or governments seeking to offset their carbon footprint purchase these credits, adding another revenue stream.

5. Equipment Manufacturing and Maintenance

  • Turbine Sales: Companies that manufacture wind turbines, blades, and other components profit from selling these to wind farm developers.
  • Operations and Maintenance Services: After wind farms are operational, companies can earn money by providing maintenance services, ensuring the turbines are functioning efficiently and minimizing downtime.

6. Ownership and Operation of Wind Farms

  • Energy Companies and Utilities: Some energy companies build, own, and operate wind farms themselves, generating revenue from electricity sales while benefiting from government incentives and RECs.
  • Independent Power Producers (IPPs): These companies develop and operate wind farms, selling electricity to utilities or directly to large industrial users under PPAs.

7. Leasing Land

  • Land Lease Payments: Wind energy developers often lease land from farmers or other landowners to build wind farms. Landowners receive lease payments, while the wind energy company profits from the electricity generated.

8. Exporting Technology and Expertise

  • Consulting Services: Wind energy companies may offer consulting services, sharing their expertise in wind farm development, grid integration, and project management with other developers or governments.
  • Exporting Equipment: Companies in countries with advanced wind energy industries might export wind turbines, blades, and other components to countries where the wind energy sector is still developing.

9. Innovative Financing Structures

  • Yieldcos: Some companies create yieldcos, publicly traded entities that own wind farms and other renewable energy assets. Yieldcos provide investors with a steady return from the revenue generated by these assets, while the parent company raises capital by selling shares.

Wind energy companies make money through a combination of direct sales of electricity, leveraging government incentives, selling environmental credits, and providing related products and services. As the global push for clean energy continues, these revenue streams are expected to grow, making wind energy an increasingly profitable industry.

If you’re interested a career in wind, click the button to learn about our innovative WindStart program

ANNOUNCEMENT – STL USA partners with Kito Crosby

STL USA is proud to announce yet another world-class partner, Kito Crosby

Kito Crosby is a leading manufacturer and supplier of lifting and rigging equipment. They produce a comprehensive range of Crosby-branded products including shackles, hooks, wire rope clips, lifting clamps, turnbuckles, blocks, and sheaves, as well as customized lifting solutions. These products are critical components in various industries such as construction, oil and gas, mining, transportation, and renewable energy, where they are used to safely lift and move heavy loads.

What makes Kito Crosby the ideal partner for STL USA?

STL USA has selected Kito Crosby to exclusively supply Crosby training materials and resources, as well as rigging equipment for our GWO Slinger Signaller and Crane & Hoist courses. Here’s why we believe they are the ideal partner for us:

High Manufacturing Standards: Crosby products are known for their stringent manufacturing processes, ensuring that every product meets or exceeds industry standards. Kito Crosby’s commitment to quality ensures that Crosby equipment is reliable and durable, providing users with confidence in their lifting operations.

Rigorous Testing: Every product undergoes rigorous testing for safety and performance. This dedication to quality control helps prevent accidents and equipment failure, making Crosby products some of the safest on the market.

Advanced Technology: Kito Crosby invests heavily in research and development to incorporate the latest technologies and innovations into their products. This focus on innovation helps improve the efficiency and safety of lifting operations.

Environmental Responsibility: Kito Crosby is committed to sustainable practices, ensuring that their manufacturing processes minimize environmental impact.

Crosby products stand out due to their unparalleled quality, safety, and innovation, which align perfectly with STL USA’s core values as a training provider. Their products are trusted worldwide for their reliability and performance, making them a leader in the lifting and rigging industry. By continuously pushing the boundaries of engineering excellence and maintaining a customer-centric approach, Crosby products have earned their reputation as the best in the field.

crosby alliance logo

Want to learn more?

Click the button to learn more about our GWO Slinger Signaller and Crane & Hoist courses

Slinger Signaller – What does the job entail?

Role of a Slinger Signaller - what can I expect from the job?

A slinger signaller is a crucial role in lifting operations, particularly in industries like construction and wind energy. This role involves the safe and efficient directing of crane and lifting operations, ensuring that loads are securely attached, balanced, and moved without causing accidents or damage. The slinger signaller works in close coordination with crane operators, riggers, and other personnel involved in lifting activities.

Responsibilities of a Slinger Signaller

  1. Load Attachment and Security
    • Sling Selection: Choosing the appropriate slings and lifting gear for the load based on its weight, shape, and material.
    • Attachment: Securing the load to the crane or lifting equipment using slings, chains, or other rigging materials.
    • Load Balancing: Ensuring that the load is properly balanced to prevent swinging or tipping during the lift.
  2. Signalling and Communication
    • Hand Signals: Using standardized hand signals to communicate with the crane operator to guide the movement of the load.
    • Radio Communication: Utilizing radios or other communication devices to relay instructions and coordinate operations.
    • Safety Coordination: Ensuring that all personnel involved in the lifting operation are aware of their roles and that the work area is clear of unnecessary personnel.
  3. Safety Checks and Compliance
    • Pre-Lift Inspections: Conducting inspections of the lifting gear and load to ensure they are in good condition and compliant with safety standards.
    • Risk Assessments: Identifying potential hazards associated with the lifting operation and implementing measures to mitigate these risks.
    • Compliance: Adhering to safety regulations, standards, and best practices to prevent accidents and ensure a safe working environment.
  4. Guiding the Load
    • Movement Direction: Directing the crane operator to move the load to the desired location safely and efficiently.
    • Positioning: Ensuring the load is placed accurately and safely at its final destination.
    • Monitoring: Continuously monitoring the load during lifting and lowering to prevent accidents.

Specialization and Training

The role of a slinger signaller is highly specialized and requires specific training and certification. This training typically includes:

  1. Rigging and Slinging Techniques
    • Types of Slings: Knowledge of different types of slings (wire rope, synthetic, chain) and their appropriate use.
    • Load Calculations: Understanding how to calculate load weights and the capacity of lifting equipment.
  2. Signalling Methods
    • Hand Signals: Training in standardized hand signals used to communicate with crane operators.
    • Communication Skills: Effective use of radios and other communication devices.
  3. Safety Practices
    • Risk Assessment: Identifying and mitigating potential hazards in lifting operations.
    • Equipment Inspection: Conducting pre-use checks on lifting equipment to ensure safety.
  4. Legal and Regulatory Knowledge
    • Standards and Regulations: Familiarity with industry standards and regulations governing lifting operations.

Role on Top of the Wind Technician Job

For a wind technician, taking on the role of a slinger signaller adds significant responsibilities and requires additional skills and knowledge. Here’s how it integrates with their primary duties:

  1. Complex Lifting Operations
    • Turbine Components: Wind technicians often work with large and heavy turbine components. Being a trained slinger signaller ensures these components are lifted and positioned safely.
    • Tight Spaces: Wind turbines are often in areas where space is limited, requiring precise lifting and signalling to avoid accidents.
  2. Enhanced Safety
    • Reduced Risk: By being both a wind technician and a slinger signaller, the individual can better manage and reduce the risks associated with lifting operations.
    • Holistic Understanding: Combining technical knowledge of wind turbines with lifting expertise leads to a comprehensive understanding of the operations, further enhancing safety.
  3. Operational Efficiency
    • Streamlined Processes: Having dual roles can streamline operations, as the individual can directly oversee and manage the lifting processes, reducing the need for additional personnel.
    • Improved Coordination: Better coordination between the lifting team and the technical team, as one person understands the requirements and limitations of both areas.
  4. Career Advancement
    • Skill Diversification: Adding slinger signaller qualifications to a wind technician’s skill set can open up more advanced roles and responsibilities within the wind energy sector.
    • Higher Demand: Technicians with dual qualifications are often in higher demand, offering more job security and potential for increased earnings.

Conclusion

The role of a slinger signaller is essential in ensuring the safe and efficient execution of lifting operations, particularly in industries like wind energy. For wind technicians, acquiring slinger signaller qualifications adds significant value, enhancing safety, operational efficiency, and career prospects. This dual expertise allows for a more integrated approach to managing the complex and demanding tasks associated with maintaining and constructing wind turbines.

INTERESTED IN OUR GWO SLINGER SIGNALLER COURSE?

Click the button to more and book.

What makes good wind technician training great?

What makes a good training provider great?

Recent years have seen a massive boom in the wind energy sector here in the US, around 130% increase in the last ten years alone. With this, we have seen a large number of training providers rapidly enter the space. With the demand for workers in the sector, this is only to be expected, as demand far outstrips supply and companies are desperate for people to help support their growth. And whilst training is obviously essential, are all training providers created equal?

Our industry is fortunate to have globally recognised standards, set by the Global Wind Organisation (GWO), that all technicians have to achieve to work on wind turbines. That level of accreditation is a major asset, but as we have all seen through our own experiences, the way these standards are trained and audited vastly affects the quality of the output achieved.

Here at STL USA, we have a long history of training technicians spanning almost 20 years, and we’ve made it our mission to deliver the highest quality wind sector training in the USA. That’s isn’t just a statement you make unless you have the drive, determination, passion and actual skills to back it up.

People:

So, what makes good training provision great? Well, we believe training starts with the people. Ask anyone about a time they learnt something that really changed their life, it will always come back to the person who taught them. Our trainers ALL have a minimum 5+ years of field experience. That’s time on site, up tower and inside turbines. Working in real world spaces, alongside their fellow technicians, gathering vast amounts of knowledge, skills and expertise.

Brandon McKelvain, our Training Manager, is undoubtably one of the most recognised, respected and influential instructors in the US today. He is the go-to guy and happily supports not only STL USA staff and customers, but also a wide array of other training providers, suppliers, manufacturers, forums, conferences and commentators, sharing his unbeatable knowledge freely. He is a man commited to the betterment of the future of wind energy and knows that means being a true team player, even on a global scale.

Another key member of the training team is Marshall Miller, recently shortlisted for the GWO Instructor of the Year 2024. Marshall’s experience prior to joining STL USA demands respect from not only those he trains, but the guys working alongside him. Marshall was quoted recently, saying,

“I love teaching wind techs because it’s where I come from. There is nothing better than getting techs in my classes and watching them leave thinking differently about the risks and hazards in their real world workplaces. Many techs get complacent regarding their safety and that of those working alongside them.

I love teaching for STL USA as they share the same passion and vision I do in the importance of quality training for wind techs. We are different to the average training provider. We provide exceptional levels of training, going above and beyond the standard requirements, because we know it’s about more than just getting certified. It’s about protecting people’s lives.”

We don’t think it’s too bold a statement to make to say we have the best training team in the US right now, and are immensely proud of the work they do and the passion and dedication they bring each and every single day.

Equipment & Facitilies:

Equipment and facilities is another area that can make or break great training provision. They say a bad workman blames his tools, we flip that on its head by saying great training doesn’t happen using substandard equipment. We use a wide range of rescue and training equipment and every single piece has been selected by our training team as the absolute best in market. We don’t cut corners and only partner with companies whose vision and values align with ours – Integrity and Quality.

Our training facilities have been specifically designed and built to as closely reflect the real-world environments wind technicians will face out in the field as possible. By creating realistic spaces and scenarios, we teach them the skills and competency to be able to deal with life or death situations with confidence. There’s a lot that can be learned in the classroom and online, but we’d rather the practical skills are obtained in a safe, controlled, supported environment, rather than your first time up an actual wind turbine!

Training in real-world settings:

Our on-site training provision really sets us head and shoulders above, as the teams can not only train technicians in the actual environment they’ll be working in, but then work in collaboration with the whole team to design and train 100% bespoke rescue plans for them, cutting no corners, making no assumptions or generalisations. Ask anyone who already works in wind and they will tell you very quickly just how priceless this kind of service really is.

If you’re interested in learning more about STL USA’s unique and excellent approach to how we deliver training, click the box below to get in touch.

Want to get in touch?

Click the button and we’ll get back to you asap

What is GWO certification?

What is the Global Wind Organisation and what is GWO certification?

What is the Global Wind Organisation (GWO)?

The Global Wind Organisation (GWO) is a non-profit body that was established by leading wind turbine manufacturers and operators. Its primary mission is to ensure a safer and more productive work environment for those employed in the wind energy industry through the creation and standardization of safety training and emergency procedures.

Key Objectives of GWO

  1. Standardization of Training

    • Uniform Safety Standards: GWO aims to create and maintain standardized training programs and safety protocols that are recognized globally, ensuring a consistent level of safety and competence across the wind energy sector.
    • Quality Assurance: By setting high standards for training providers, GWO ensures that all training is delivered to the same high level of quality and effectiveness.
  2. Safety and Risk Reduction

    • Incident Prevention: Through comprehensive training modules, GWO aims to significantly reduce the number of accidents and incidents in the wind energy industry.
    • Emergency Preparedness: GWO training equips workers with the knowledge and skills needed to respond effectively in emergency situations, thereby minimizing potential harm.
  3. Enhancing Competence

    • Skilled Workforce: By certifying workers in essential safety practices and technical skills, GWO helps to cultivate a highly skilled and competent workforce in the wind energy sector.
    • Continuous Improvement: GWO continuously updates and improves its training standards to reflect the latest industry practices and technological advancements.

GWO Training Standards

GWO offers a variety of training modules, which are typically divided into Basic Safety Training (BST) and Advanced modules. Key training modules include:

  1. Basic Safety Training (BST)

    • First Aid: Training on basic first aid techniques and emergency response.
    • Manual Handling: Instruction on safe manual handling techniques to prevent injury.
    • Fire Awareness: Education on fire prevention, firefighting, and evacuation procedures.
    • Working at Heights: Training on safe practices for working at heights, including the use of personal protective equipment (PPE).
    • Sea Survival: For offshore workers, training on survival techniques in the event of an emergency at sea.
  2. Advanced Modules

    • Advanced Rescue Training (ART): Training on complex rescue scenarios and techniques.
    • Enhanced First Aid (EFA): More in-depth first aid training tailored to the wind industry.

Membership and Governance

GWO is governed by its member companies, which include some of the largest and most influential wind turbine manufacturers and operators in the world. These members collaborate to develop and update GWO training standards and ensure they meet the evolving needs of the industry.

What is GWO Certification?

GWO (Global Wind Organisation) certification is a set of standardized training programs and safety guidelines designed for personnel working in the wind energy industry. The certification is developed and governed by the Global Wind Organisation, a non-profit body founded by leading wind turbine manufacturers and operators. The goal of GWO certification is to ensure that all wind energy workers possess the necessary skills and knowledge to perform their jobs safely and effectively.

Key GWO Training Modules

The GWO Basic Safety Training (BST) standard includes several core modules:

  1. First Aid: Training on basic first aid techniques, including CPR, wound treatment, and emergency response.
  2. Manual Handling: Instruction on safe lifting techniques and ergonomics to prevent injuries related to manual handling tasks.
  3. Fire Awareness: Education on fire prevention, firefighting techniques, and safe evacuation procedures.
  4. Working at Heights: Training on safe practices for working at heights, including the use of personal protective equipment (PPE) like harnesses and fall arrest systems.
  5. Sea Survival: For offshore wind workers, training on survival techniques in the event of an emergency at sea, including the use of life-saving equipment.

Additionally, there are advanced modules such as GWO Advanced Rescue Training (ART), which covers more complex rescue scenarios and techniques.

Why Do Wind Technicians Need GWO Certification?

1. Safety Assurance

  • Risk Mitigation: Working on wind turbines involves significant risks, including falls from height, electrical hazards, and adverse weather conditions. GWO certification ensures that technicians are well-trained to recognize and mitigate these risks.
  • Standardized Safety Practices: The certification provides a standardized approach to safety, ensuring that all technicians adhere to the same high standards, regardless of where they work.

2. Compliance with Industry Standards

  • Employer Requirements: Many wind turbine manufacturers and operators require GWO certification as a minimum standard for employment. This ensures that all workers meet a consistent level of competency.
  • Regulatory Compliance: In some regions, GWO certification helps companies comply with local safety regulations and occupational health standards.

3. Operational Efficiency

  • Reduced Accidents: Well-trained technicians are less likely to have accidents, which can lead to fewer disruptions and lower costs related to injuries and equipment damage.
  • Improved Skills: GWO training equips technicians with the skills needed to perform their tasks efficiently and safely, leading to improved overall operational performance.

4. Professional Development

  • Career Advancement: Holding a GWO certification can enhance a technician’s credentials, making them more attractive to employers and opening up opportunities for career advancement.
  • Continual Learning: GWO certification programs often require periodic refresher courses, ensuring that technicians stay up-to-date with the latest safety practices and technological advancements in the industry.

Conclusion

GWO certification is a crucial component for anyone working in the wind energy sector. It ensures that wind technicians are adequately trained to handle the unique risks associated with their jobs, promotes industry-wide safety standards, helps companies comply with regulations, and supports the professional growth of the technicians. By standardizing training and safety practices, GWO certification plays a key role in fostering a safer and more efficient working environment in the wind energy industry.

Book a GWO Course

Click the button to get in touch

ANNOUNCEMENT – STL USA partners with OEL Worldwide

STL USA is proud to announce its latest partner, OEL Worldwide

STL USA is excited to announce that we are partnering with the incomparable OEL to provide PPE equipment and arc flash clothing for our QEW NFPA 70E standard Low and High Voltage Electrical Safety Training course.

OEL Worldwide Industries is a company that specializes in manufacturing and distributing electrical safety products, including personal protective equipment (PPE) for workers exposed to electrical hazards. Their product line includes items such as arc flash protective clothing, insulated tools, and electrical safety devices. Their products are all 100% American made and of the very highest quality and they share STL USA’s core value of putting worker safety as a priority above all else.

Here are some of the key things that make OEL world-leaders in PPE provision for the wind industry.

  • Specialization: OEL Worldwide Industries focuses specifically on electrical safety, providing specialized products designed to protect workers from electrical hazards like arc flash, shock, and electrocution.
  • Expertise: Their deep knowledge and expertise in electrical safety allow them to design and produce highly effective and reliable safety gear.
  • Standards Compliance: Their products comply with rigorous safety standards such as NFPA 70E, ASTM, and OSHA regulations, ensuring maximum protection for users
  • Advanced Materials: OEL uses advanced materials and technologies to enhance the protective properties of their PPE, ensuring it meets the latest safety standards and provides superior protection.
This partnership brings together two companies that are passionate in delivering the very best in training and working safely for those in the wind sector.
We look forward to a long and very successful future working alongside OEL.

Book your NFPA 70E course

Click the button to book now.

What is NFPA 70E?

What is NFPA 70E and why is it important for Wind Techs?

STL USA proudly offers our Low and High Voltage Electrical Safety Training that conforms the national NFPA 70E standard. The training course we offer is a wind-specific, face-to-face training program designed to equip wind technicians with the electrical safety knowledge, best work practices in electrical safety, and how to apply them in real-world situations.

Here we delve into a bit more detail regarding what the NFPA 70E actually means and why it’s so important for those of us working with wind turbines.

NFPA 70E is the National Fire Protection Association’s standard for electrical safety in the workplace. It provides guidelines to protect workers from electrical hazards, including shock, arc flash, and arc blast. The standard covers safety-related work practices, safety-related maintenance requirements, and other administrative controls to ensure safe work environments when employees are exposed to electrical hazards.

How is this applicable to working in Wind Turbines?

Working on wind turbines involves exposure to various electrical hazards, making NFPA 70E highly relevant. Here’s how NFPA 70E applies to the wind energy sector:

  1. Electrical Safety Program

    • Wind energy companies must develop an ESP tailored to the specific risks associated with wind turbines. This includes procedures for safe work on electrical components, such as generators, inverters, transformers, and control systems.
  2. Training

    • Employees working on wind turbines must be trained in electrical safety according to NFPA 70E standards. This includes understanding the specific electrical hazards associated with wind turbines and the safe work practices required to mitigate these risks.
  3. Work Practices

    • Safe work practices, including LOTO procedures, are critical when servicing wind turbines. LOTO ensures that electrical systems are de-energized and cannot be accidentally re-energized during maintenance.
    • Proper use of PPE, such as insulated gloves, arc-rated clothing, and face shields, is essential to protect against shock and arc flash hazards.
  4. Maintenance

    • Regular maintenance and inspection of electrical components within the wind turbine, such as the generator, control panels, and wiring, must be performed according to NFPA 70E guidelines to ensure their safe operation.
  5. Risk Assessment

    • Conducting risk assessments for tasks involving electrical work on wind turbines is crucial. This includes identifying potential arc flash hazards, determining arc flash boundaries, and specifying required PPE and safety measures.
  6. PPE and Arc Flash Protection

    • Wind turbine technicians must use appropriate PPE to protect against arc flash incidents. NFPA 70E provides guidelines for determining the arc flash boundary and selecting the right PPE based on the incident energy level.
    • Arc flash labels must be placed on electrical equipment to indicate the potential hazard and required PPE, helping technicians quickly identify the necessary precautions.

Specific Examples in Wind Turbines

  1. Generator Maintenance

    • When servicing the wind turbine generator, technicians must follow LOTO procedures to ensure it is de-energized. They should wear arc-rated clothing and use insulated tools to prevent electrical shock and arc flash incidents.
  2. Control Panel Work

    • Technicians working on control panels within the nacelle must perform a risk assessment to determine the arc flash hazard. Appropriate PPE, such as an arc flash suit and face shield, should be worn to protect against potential arc flash.
  3. Cable Inspections

    • Inspecting and maintaining the cabling that runs from the nacelle to the transformer requires adherence to NFPA 70E standards. This includes verifying de-energization and using insulated gloves and protective clothing.

As you can see, high quality QEW Electrical Safety training is essentail for safely working in wind turbines, it’s vital importance cannot be overlooked.

The STL USA QEW training is a 2-day course covering 2 modules, for low and high voltage, and is easily tagged onto the end of any of our other training courses taken at our sate of the art facilities in Abilene, Texas. Modules can be taken together over the 2 days or individually as required.

We are also a Siemens approved provider for QEW training to NFPA 70E low voltage, vital for anyone wishing to work in or around Siemens turbines.

Book your QEW NFPA 70E course

Click the button to book now.

How to get a job in the wind energy sector

How to get a job in the wind energy sector

Breaking into the wind energy sector involves a combination of education, networking, gaining relevant experience, and understanding the industry. Here are some steps to help you get a job in the wind energy sector:

1. Education and Training

  • Specialized Courses: Consider enrolling in specialized courses or certifications related to wind energy. Examples include courses on wind turbine technology, renewable energy systems, and sustainability.
  • Certifications: Acquire certifications like the Global Wind Organisation (GWO) certification, which is highly valued in the industry for safety and technical training.

2. Gain Relevant Experience

  • Internships and Co-ops: Look for internships or cooperative education programs with wind energy companies or related industries. This provides hands-on experience and industry connections.
  • Entry-Level Jobs: Start with entry-level positions that can lead to more specialized roles. Positions like wind turbine technician, site analyst, or junior engineer can be good starting points.
  • Project Work: Participate in renewable energy projects, whether through academic programs, volunteer work, or community initiatives. Real-world project experience is highly valuable.

3. Networking

  • Industry Associations: Join industry associations such as the American Clean Power Association, Wind Europe, or other local and international renewable energy organizations.
  • Conferences and Events: Attend conferences, trade shows, and industry events to meet professionals, learn about the latest developments, and explore job opportunities.
  • Professional Networking: Use LinkedIn and other professional networking platforms to connect with industry professionals, join relevant groups, and participate in discussions.

4. Stay Informed

  • Industry Trends: Keep up with the latest trends, technologies, and regulations in the wind energy sector. Subscribe to industry publications, follow relevant blogs, and join online forums.
  • Research Companies: Identify key players in the wind energy industry and research their projects, technologies, and career opportunities. Tailor your applications to align with their needs and values.

5. Develop Key Skills

  • Technical Skills: Gain expertise in areas such as aerodynamics, electrical systems, mechanical systems, and control systems. Familiarize yourself with software and tools used in the industry (e.g., SCADA systems, wind resource assessment tools).
  • Soft Skills: Enhance your communication, teamwork, problem-solving, and project management skills. These are crucial for working effectively in multidisciplinary teams and managing projects.

6. Consider Geographic Flexibility

  • Location: Be open to relocating, as many wind energy jobs are located in specific regions with high wind resources. Countries like the United States, Germany, China, and Denmark are leaders in wind energy.
  • Remote Sites: Some jobs may require working in remote or rural areas where wind farms are typically located.

7. Target Specific Roles

  • Technical Roles: Positions such as wind turbine technician, electrical engineer, mechanical engineer, and SCADA engineer.
  • Project Management: Roles like project manager, site manager, and construction manager.
  • Analysis and Support: Jobs such as wind resource analyst, environmental impact assessor, and policy analyst.
  • Sales and Business Development: Positions in sales, business development, and marketing within the wind energy sector.

8. Apply Strategically

  • Tailored Applications: Customize your resume and cover letter for each job application, highlighting relevant skills and experience.
  • Job Boards: Use specialized job boards and websites for renewable energy jobs, such as RenewableEnergyJobs.com, Energy Jobline, and the career sections of industry associations.
  • Direct Applications: Apply directly through company websites and follow up with contacts you may have made through networking.

With a wide range of training courses available, with huge variances in quality and applicability, deciding where to start can be a bit daunting. WindStart, powered by STL USA, is a fantastic foundation for launching your career in wind, as it covers not only all the essential GWO certifications, but also, a huge amount of skill, technical and competency training, utilising real-world equipment and situations. This means graduates are far more attractive to businesses looking to hire, as condidates have far more demonstrable skills. Plus, with funding options covering up to 100% of course fees, it also means that WindStart is open to a wider range of applicants, as long as you have a high school diploma and can carry a load of 50 pounds up stairs.

Click the button below to read more about the WindStart program and to submit your application.

Want to know more?

Click the button to learn more about the WindStart – Get into Wind Program

Top 5 things we wish we’d known early on as a wind technician

how to climb a wind turbine

Thinking of starting a career as a Wind Technician? Here's 5 things our trainers wish they'd known in the early days.

We know hindsight is a wonderful thing, but without a time machine, there’s little we can do to change the past. But we can learn from other people and their experiences. If you’re starting your career as a Wind Technician, you know how invaluable it is to learn from experienced professionals.

So, with that in mind, we spoke to our amazing GWO course instructors and asked them, what do you wish you’d known in those early days as a wind tech?

No.1 – What are the proper LOTO procedures and what do really good LOTO procedures look like?

Lockout/Tagout (LOTO) procedures are critical for ensuring the safety of workers performing maintenance or servicing on machinery and equipment. Proper LOTO procedures prevent the unexpected energization or startup of machinery, as well as the release of stored energy, which could cause injuries. Here are the key steps and components of a good LOTO procedure:

Key Steps in LOTO Procedures

  1. Preparation for Shutdown

    • Notify affected employees: Inform all affected employees that a lockout/tagout procedure is about to begin.
    • Identify energy sources: Determine all sources of energy for the equipment (electrical, mechanical, hydraulic, pneumatic, etc.).
  2. Shutdown

    • Turn off the equipment: Use normal shutdown procedures to turn off the machine or equipment.
  3. Isolation

    • Isolate the equipment from its energy source: Physically disconnect the equipment from energy sources. This might involve turning off circuit breakers, closing valves, or disconnecting power sources.
  4. Lockout/Tagout Application

    • Apply locks and tags: Place lockout devices on energy-isolating devices (such as switches, valves, etc.) and apply tags indicating that the equipment is being serviced and should not be operated. Each worker should apply their own lock and tag to ensure personal protection.
  5. Release of Stored Energy

    • Release or restrain stored energy: Ensure that any stored energy (e.g., in springs, elevated machine parts, capacitors, etc.) is released, drained, or otherwise made safe.
  6. Verification of Isolation

    • Verify that the equipment is isolated: Before beginning any maintenance or servicing, confirm that the equipment is properly isolated and cannot be energized. This might involve trying to start the equipment and ensuring it does not activate.

Restoring Equipment to Service

  1. Inspect the Work Area

    • Ensure the area is clear: Verify that all tools and materials are removed and that the machine or equipment is in a safe condition for re-energization.
  2. Remove Lockout/Tagout Devices

    • Remove locks and tags: Each person who applied a lock and tag must remove their own lock and tag. Follow an established protocol for the safe removal of these devices.
  3. Re-energize the Equipment

    • Restore energy: Reconnect the equipment to its energy source(s) and ensure it is functioning properly.
  4. Notify Affected Employees

    • Inform affected employees: Let all affected employees know that the maintenance or servicing is complete and that the equipment is back in service.

Components of a Good LOTO Procedure

  1. Detailed Written Procedures

    • Specific steps: Clearly document all the steps for shutting down, isolating, locking, and tagging out equipment.
    • Tailored procedures: Ensure procedures are specific to each type of equipment or machinery.
  2. Training and Communication

    • Training programs: Provide comprehensive training to all employees on LOTO procedures, emphasizing the importance of following each step.
    • Communication: Regularly communicate the importance of LOTO procedures and provide updates or refresher training as needed.
  3. Proper Equipment and Tools

    • Locks and tags: Ensure there are enough lockout devices and tags available, and that they are suitable for the types of energy sources present.
    • Isolation devices: Provide additional equipment needed to isolate energy sources, such as valve covers or circuit breaker lockout devices.
  4. Regular Audits and Inspections

    • Periodic inspections: Conduct regular inspections of LOTO procedures to ensure compliance and identify areas for improvement.
    • Audit trails: Keep records of all lockout/tagout activities, including the personnel involved and the equipment serviced.
  5. Accountability and Responsibility

    • Designate responsibilities: Clearly assign responsibility for each part of the LOTO procedure to specific individuals.
    • Employee involvement: Engage employees in the development and improvement of LOTO procedures to ensure buy-in and adherence.

By following these steps and components, organizations can create robust LOTO procedures that protect workers and ensure a safe working environment.

No.2 – What are the differences between AR and FR clothing?

AR (Arc Rated) and FR (Flame Resistant or Flame Retardant) clothing are both designed to protect workers from hazardous environments involving heat, flames, or electrical arcs. However, there are key differences between these types of protective clothing.

1. Purpose and Protection

  • FR Clothing (Flame Resistant/Flame Retardant)

    • Purpose: Designed to protect the wearer from flames and thermal hazards. It is used in environments where there is a risk of fire or exposure to high temperatures.
    • Protection: FR clothing resists ignition and self-extinguishes once the heat source is removed. It reduces the risk of burns and provides a barrier against fire.
    • Typical Use: Commonly used in industries like oil and gas, welding, and firefighting.
  • AR Clothing (Arc Rated)

    • Purpose: Specifically designed to protect the wearer from the thermal hazards of an electrical arc flash. Arc flashes can produce extreme heat and intense light, leading to severe burns and injuries.
    • Protection: AR clothing provides protection against the high temperatures and intense energy produced by an arc flash. It is rated based on its ability to withstand an arc flash incident.
    • Typical Use: Primarily used in electrical utilities, maintenance, and industries where there is a risk of electrical arc flash incidents.

2. Standards and Testing

  • FR Clothing

    • Standards: Common standards include NFPA 2112 (Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire) and ASTM F1506 (Standard Performance Specification for Flame Resistant Textile Materials for Wearing Apparel for Use by Electrical Workers Exposed to Momentary Electric Arc and Related Thermal Hazards).
    • Testing: FR clothing is tested for its ability to resist ignition, its self-extinguishing properties, and its thermal insulation capabilities.
  • AR Clothing

    • Standards: Key standards include ASTM F1959/F1959M (Standard Test Method for Determining the Arc Rating of Materials for Clothing) and NFPA 70E (Standard for Electrical Safety in the Workplace).
    • Testing: AR clothing undergoes arc flash testing to determine its Arc Thermal Performance Value (ATPV) or Energy Breakopen Threshold (EBT). These ratings indicate the level of protection the clothing provides against arc flash incidents.

3. Labeling and Ratings

  • FR Clothing

    • Labeling: Labels typically indicate compliance with relevant standards (e.g., NFPA 2112) and may provide information on the garment’s flame resistance properties.
    • Ratings: FR clothing does not have an arc rating because it is not specifically tested for arc flash protection.
  • AR Clothing

    • Labeling: Labels indicate compliance with arc flash protection standards and include the ATPV or EBT rating, which measures the level of protection against arc flash incidents.
    • Ratings: AR clothing must have an arc rating, which quantifies its ability to protect against the thermal energy from an arc flash.

4. Material and Design

  • FR Clothing

    • Material: Made from fabrics that are inherently flame resistant or treated to resist flames. Common materials include Nomex, Kevlar, and treated cotton.
    • Design: Designed to minimize ignition sources and often includes features like non-melting zippers, flame-resistant threads, and reinforced seams.
  • AR Clothing

    • Material: Made from materials that provide both flame resistance and arc flash protection. These materials can include blends of FR fabrics with additional properties for arc resistance.
    • Design: Incorporates features to enhance protection against arc flash, such as multiple layers, reinforced areas, and designs that minimize the risk of arc flash exposure.

Summary

  • FR Clothing: Protects against flames and thermal hazards. Commonly used in industries with fire risks. Labeled with flame resistance standards.
  • AR Clothing: Protects against arc flash incidents and includes an arc rating (ATPV or EBT). Primarily used in electrical industries. Labeled with arc flash protection standards.

Choosing the appropriate type of protective clothing depends on the specific hazards present in the work environment. For environments with both fire and electrical arc flash risks, AR clothing that meets both flame resistance and arc flash protection standards may be necessary.

No.3 – What are some of the common high voltage hazards wind techs face?

High voltage hazards in wind turbines pose significant risks to workers, and understanding these hazards is essential for ensuring safety. Here are some common high voltage hazards encountered in wind turbines:

1. Arc Flash

  • Description: An arc flash occurs when an electrical current passes through the air between conductors, generating intense heat and light. This can cause severe burns, eye damage, and even fatalities.
  • Risks: Arc flashes can occur during maintenance or repair operations, particularly when working on electrical panels, switchgear, or other high-voltage components.

2. Electrical Shock

  • Description: Electrical shock occurs when a person comes into contact with a live electrical component, resulting in the passage of electrical current through the body.
  • Risks: Shock hazards are present when working on or near live electrical equipment, including transformers, inverters, and cabling within the turbine.

3. Stored Energy

  • Description: High-voltage systems can store significant amounts of electrical energy in capacitors and other components, even when the system is shut down.
  • Risks: Unexpected release of stored energy can cause shocks or arc flashes. Proper procedures must be followed to discharge stored energy before working on the equipment.

4. Insulation Failure

  • Description: Insulation in high-voltage components can degrade over time due to environmental factors, mechanical wear, or electrical stresses.
  • Risks: Insulation failure can lead to short circuits, ground faults, and unintentional energization of conductive parts, posing shock and fire hazards.

5. Switching Operations

  • Description: Operations involving the switching of high-voltage circuits, such as connecting or disconnecting components, can generate electrical arcs.
  • Risks: Improper switching procedures can result in arc flash incidents or damage to equipment, creating hazardous conditions.

6. Lightning Strikes

  • Description: Wind turbines are tall structures often located in exposed areas, making them susceptible to lightning strikes.
  • Risks: Lightning can cause direct damage to electrical components and induce high-voltage surges, leading to arc flashes and equipment failure.

7. Faulty Grounding

  • Description: Proper grounding is essential to ensure electrical safety by providing a path for fault currents. Faulty or inadequate grounding can pose serious risks.
  • Risks: Improper grounding can lead to elevated voltages in unintended parts of the system, increasing the risk of electrical shock and equipment damage.

8. Human Error

  • Description: Mistakes made by personnel during installation, maintenance, or repair of high-voltage systems can create hazardous conditions.
  • Risks: Incorrect procedures, failure to follow safety protocols, or lack of proper training can result in exposure to live parts, leading to shocks or arc flashes.

9. Component Failure

  • Description: High-voltage components, such as transformers, converters, and circuit breakers, can fail due to manufacturing defects, aging, or excessive loads.
  • Risks: Component failures can lead to electrical faults, fires, and other hazardous situations.

10. Environmental Conditions

  • Description: Harsh environmental conditions, such as extreme temperatures, humidity, and saltwater exposure, can affect the integrity of high-voltage components.
  • Risks: Environmental degradation can lead to insulation breakdown, corrosion of electrical connections, and increased likelihood of electrical faults.

Safety Measures

To mitigate these hazards, the following safety measures are typically implemented:

  • Training and Certification: Ensuring all personnel are properly trained and certified in high-voltage safety procedures.
  • Personal Protective Equipment (PPE): Using appropriate PPE, such as insulated gloves, arc flash suits, and face shields.
  • Lockout/Tagout (LOTO) Procedures: Implementing strict LOTO procedures to ensure equipment is de-energized and cannot be accidentally re-energized during maintenance.
  • Regular Inspections and Maintenance: Conducting regular inspections and maintenance of high-voltage components to identify and address potential issues.
  • Proper Grounding and Bonding: Ensuring all components are correctly grounded and bonded to prevent electrical shocks.
  • Use of Insulated Tools: Utilizing insulated tools to prevent accidental contact with live parts.
  • Environmental Controls: Protecting electrical components from environmental damage through proper enclosures and environmental controls.

By understanding and addressing these high voltage hazards, the safety of workers in and around wind turbines can be significantly improved.

No.4 – How to read electrical and hydraulic schemtics

Reading schematics for wind turbines, whether electrical or hydraulic, requires understanding the symbols, layout, and conventions used in these diagrams. Here’s a guide to help you interpret these schematics effectively:

Understanding Electrical Schematics

  1. Basic Components and Symbols

    • Lines: Represent wires or conductors. Solid lines are typically for power circuits, and dashed or dotted lines indicate control circuits.
    • Switches: Various types of switches (manual, limit, relay contacts) are depicted with different symbols.
    • Resistors, Capacitors, Inductors: Each has a unique symbol, often standardized by organizations like IEC or ANSI.
    • Transformers: Usually shown with two coils and a magnetic core, indicating voltage step-up or step-down.
    • Motors: Represented with a circle and the letter “M”.
    • Diodes and Transistors: Use specific symbols that indicate the direction of current flow and the type of semiconductor device.
  2. Reading the Layout

    • Power Flow: Follow the flow of power from the source (e.g., generator) through transformers, converters, and distribution panels to various loads (motors, lighting, control systems).
    • Control Circuits: Trace control signals from switches and sensors to relays, contactors, and controllers.
  3. Common Wind Turbine Electrical Components

    • Generator: Converts mechanical energy from the rotor into electrical energy.
    • Converters/Inverters: Convert AC to DC (rectifiers) or DC to AC (inverters) for grid compatibility.
    • Transformers: Step up the voltage for transmission or step it down for distribution within the turbine.
  4. Example Symbols

    • Generator: A circle with an embedded “G”.
    • Transformer: Two inductive coils with lines between them.
    • Circuit Breaker: A switch symbol with a break in the line.

Understanding Hydraulic Schematics

  1. Basic Components and Symbols

    • Pumps: Typically depicted with a circle and a triangle pointing outward (indicating flow direction).
    • Valves: Different types (check valves, directional control valves, pressure relief valves) have specific symbols that show their function and flow paths.
    • Actuators: Cylinders and motors are shown with symbols indicating linear or rotary motion.
    • Reservoirs: Depicted as a rectangle with a line across the top, representing the fluid level.
  2. Reading the Layout

    • Flow Paths: Trace the flow of hydraulic fluid from the reservoir through the pump, valves, actuators, and back to the reservoir.
    • Control Lines: Identify pilot lines that control valve positions, often represented with dashed lines.
  3. Common Wind Turbine Hydraulic Components

    • Pitch Control System: Uses hydraulic actuators to adjust the angle of the blades.
    • Brake System: Employs hydraulic pressure to apply brakes for stopping the rotor.
  4. Example Symbols

    • Hydraulic Pump: A circle with a triangle pointing outward.
    • Directional Control Valve: A box with arrows indicating the flow direction, often showing multiple positions.
    • Cylinder: A rectangle with lines indicating the piston and rod.

Tips for Reading Schematics

  1. Start with the Legend: Always begin by reviewing the legend or key, which explains the symbols used in the schematic.
  2. Follow the Flow: Identify the source of power or fluid and follow the path through various components to understand the system’s operation.
  3. Look for Labels: Components are often labeled with reference designators (e.g., R1 for resistor, Q1 for transistor) and sometimes with descriptive names.
  4. Refer to Standards: Familiarize yourself with standards like IEC, ANSI, or ISO, which provide guidelines for schematic symbols and layout.
  5. Practice with Examples: Study sample schematics and try to identify and trace different circuits or hydraulic paths.

Resources for Learning

  • Standards Organizations: Documents from IEC, ANSI, and ISO.
  • Textbooks and Manuals: Books on electrical and hydraulic systems, specifically for wind turbines or industrial applications.
  • Online Tutorials: Websites and videos that offer step-by-step guides to reading schematics.

By understanding these basic principles and symbols, you’ll be able to read and interpret wind turbine electrical and hydraulic schematics more effectively.

No.5 – What are all the different parts that make up a wind turbine?

A wind turbine consists of several key components that work together to convert wind energy into electrical energy. Here are the main parts of a wind turbine and their functions:

1. Rotor Blades

  • Function: Capture the kinetic energy of the wind.
  • Description: Usually, wind turbines have three rotor blades that are aerodynamically designed to maximize efficiency.

2. Hub

  • Function: Connects the rotor blades to the nacelle.
  • Description: The central part where the blades are attached. It is connected to the main shaft.

3. Nacelle

  • Function: Houses most of the turbine’s key components.
  • Description: Located at the top of the tower, the nacelle contains the gearbox, generator, controller, and other essential parts.

4. Main Shaft (Low-Speed Shaft)

  • Function: Transfers mechanical energy from the rotor blades to the gearbox.
  • Description: Connects the hub to the gearbox and rotates at the same speed as the blades.

5. Gearbox

  • Function: Increases the rotational speed from the main shaft to the generator.
  • Description: Converts the slow rotational speed of the rotor (typically 10-60 RPM) to a higher speed (typically 1000-1800 RPM) suitable for generating electricity.

6. Generator

  • Function: Converts mechanical energy into electrical energy.
  • Description: Often an induction or synchronous generator that produces electricity when rotated.

7. Controller

  • Function: Monitors and controls the operation of the turbine.
  • Description: Ensures the turbine operates efficiently and safely, adjusting the pitch of the blades and the yaw of the nacelle as needed.

8. Brake System

  • Function: Stops the rotor in emergencies or during maintenance.
  • Description: Mechanical, electrical, or hydraulic brakes can be used to stop the rotor from spinning.

9. Yaw System

  • Function: Rotates the nacelle to face the wind direction.
  • Description: Ensures the turbine is aligned with the wind to maximize energy capture. It includes a yaw motor and a yaw bearing.

10. Pitch System

  • Function: Adjusts the angle of the rotor blades.
  • Description: Changes the pitch of the blades to control rotational speed and optimize power generation.

11. Tower

  • Function: Supports the nacelle and rotor blades.
  • Description: Usually made of steel or concrete, the tower elevates the rotor blades to a height where they can capture more wind energy.

12. Anemometer and Wind Vane

  • Function: Measure wind speed and direction.
  • Description: Mounted on the nacelle, these instruments provide data to the controller to adjust the yaw and pitch systems.

13. Transformer

  • Function: Steps up the voltage of the generated electricity for transmission.
  • Description: Converts the generator’s output voltage to a higher voltage suitable for transmission over power lines.

14. Foundation

  • Function: Anchors the turbine to the ground.
  • Description: Made of concrete and steel, the foundation provides stability and support for the entire structure.

15. Cooling System

  • Function: Keeps the generator and other components at a safe operating temperature.
  • Description: Uses air or liquid cooling methods to dissipate heat generated during operation.

Understanding these parts and their functions is essential for the design, operation, and maintenance of wind turbines.

As you can see, learning from those with high-quality, real-life experience can be a huge benefit at any stage of your wind technician career, especially if you’re just starting out. That’s why at STL USA, we value training the whole wind tech, throughout the lifespan of their career, rather than solely focusing on certification and classroom training.

If you’d like to know more about the wide range of training STL USA offers, above and beyond standard GWO certification courses, drop us a message today by clicking the button below.

Want to know more?

Click the button to drop us a message