What is full-service training for wind technicians?

What is full-service training for wind technicians

Full-service training for wind technicians, all you need to know.

The industry is heavily focused on technician certification right now as standards such as GWO are adopted across the sector. However certification is simply a pass to get through the door, what comes next is what defines the success of a technician in the role.

STL USA has created full-service training for wind technicians, a training framework that outlines a clear pathway of progression from beginner through to advanced skills and competencies. These programs are highly adaptive to an individual company’s requirements, containing a complete range of wind technician training courses and work as a blueprint for how they see their workforce developing over time as we all drive towards better quality and the rewards that this brings.

As the industry matures ongoing training and development will only increase in importance as it becomes a clear route for companies to retain and win new projects through their ability to perform and exceed objectives. STL USA is already working with a raft of leaders in the wind sector, leaders who understand the role this plays in cementing their place in the industry to take advantage of the opportunities fully that major growth brings.

What do we mean by full-service wind technician training

At STL USA we are dedicated to training the technician to do the very best job, in the safest way possible. Respecting the fact that people are at the very core of this industry, real people with friends, families and responsibilities, keeps us focused on the task at hand – equipping technicians with the skills and training to enable them to fulfil those responsibilities and go home to their families every day. That isn’t done by ticking boxes, and it is never about meeting the minimum.

We are lucky that our industry has a unified safety standardization, but at STL USA we don’t see that as a goal, we see certification as the baseline. A person can attain their required GWO certifications without ever having set foot in a wind turbine. So, we need to think about the wider job we are actually asking them to do and providing them with the skills and competencies to do it well. That’s where full-service training comes into play.

We work directly with companies to ensure we fully understand their unique requirements from the people they employ, spending time and energy to get beneath the surface and build training programs that are tailored to support wind technicians throughout the entire lifetime of their careers. The results are motivated technicians who perform above expectations for their employers, a win win.

Pathways for technician skills and competency

Establishing clear outcomes from training. This sounds simple enough, but in our experience, it’s so often overlooked. We start with a concise audit of our customer’s workforce, measuring against the expected skills a technician should have based on role and experience. Understanding exactly what technicians can and can’t do is vital, not just for developing training programs, but also for their companies so they can accurately manage the work they do. Once we understand where we are from a skills and competence perspective we then work with each company to map out where we want to be and the training pathway we need to follow to get there.  Integrated training programs are then developed incorporating a range of modules that STL USA deliver, internal training and third-party training designed for each wind tech throughout their lifecycle, from beginner to intermediate, all the way through to advanced. As mentioned previously, we see certification as a necessary starting point. Achieving the required standardized certificates gets a person through the door, but in the same way, you wouldn’t expect a surgeon to operate just from reading the theory and procedures in a textbook, technicians need tailor-made, ongoing skills and competency training to do their job well.

Adaptive programs based on employers needs

We treat every single client differently, as we know they all have varying needs and objectives. One shoe fits all just isn’t going to help anyone smash their objectives. We work alongside employers to establish exactly what they want and then build out bespoke training programs to meet those needs. This starts with an assessment phase, which we believe is vital to establishing the real-life competency of the workforce. We can then create a flexible, unified program that incorporates a multitude of disciplines and deliver that in partnership with our client on an ongoing basis.

We are all aware of the rapid growth the wind industry is currently experiencing and with that comes fast-paced changes, particularly in terms of the technology being rolled out regularly. Keeping up with these changes is hard enough for clients, let alone having the time and experience to consider how those changes affect the training requirements and skills development of their wind technicians. Working with a leading training provider like STL USA means that you can tap into decades of expertise with access to a training team at the forefront of the industry, whose job is to ensure your workforce can confidently embrace these changes and incorporate advanced learnings and skills into their daily working life.

Interested in how full service can benefit your company?

Click the button to speak to us.

NFPA 70E for wind technicians

NFPA for wind techs

Electrical safety for wind techs, all you need to know.

Wind technicians, working with both low and high-voltage electrical systems in wind turbines, must have a comprehensive understanding of electrical safety to comply with NFPA 70E, the standard for electrical safety in the workplace. This standard provides guidelines to protect workers from electrical hazards such as shock, arc flash, and arc blast, which are particularly relevant in the wind energy sector. Below is a breakdown of the key electrical safety knowledge and practices that wind technicians need to be familiar with for both low and high-voltage systems:

Understanding Electrical Hazards

  • Shock Hazard: Wind technicians must understand the dangers of electric shock, which can occur when they come into contact with energized parts. Both low and high-voltage systems can pose significant risks, with high-voltage systems capable of causing severe injury or death.
  • Arc Flash and Arc Blast: Arc flash hazards occur when an electric current passes through the air between conductors or from a conductor to ground. This can cause extreme heat and pressure waves (arc blast), which can be fatal. Technicians must recognize the conditions that can lead to arc flash and how to protect themselves.

Voltage Definitions and Categories

  • Low Voltage (typically under 1,000 volts): Wind turbines often operate on systems that fall under this category for controls, lighting, and communication systems. Technicians need to understand the specific risks and safety measures associated with low-voltage work, which can still be dangerous if not handled properly.
  • High Voltage (typically over 1,000 volts): This includes the primary generation and transmission components within wind turbines. High-voltage work involves greater risks, and technicians must be trained in specific safety protocols for working with such systems, including the use of specialized personal protective equipment (PPE) and tools.

Personal Protective Equipment (PPE)

  • Arc-Rated Clothing: Technicians must wear appropriate arc-rated clothing when working on or near electrical equipment. This clothing is designed to withstand the heat generated by an arc flash and prevent burns.
  • Insulated Gloves and Tools: For both low and high-voltage work, insulated gloves are essential to protect against shock. Technicians must also use insulated tools to prevent accidental contact with live parts.
  • Face Shields and Helmets: Arc flash face shields and helmets protect against burns and flying debris caused by arc blasts. These should be used whenever there is a risk of exposure to arc flash hazards.

STL USA partners with world leading PPE manufacturer OEL Worldwide to provide PPE equipment and arc flash clothing for our QEW NFPA 70E standard Low and High Voltage Electrical Safety Training course.

Here are some of the key things that make OEL world-leaders in PPE provision for the wind industry.

  • Specialization: OEL Worldwide Industries focuses specifically on electrical safety, providing specialized products designed to protect workers from electrical hazards like arc flash, shock, and electrocution.
  • Expertise: Their deep knowledge and expertise in electrical safety allow them to design and produce highly effective and reliable safety gear.
  • Standards Compliance: Their products comply with rigorous safety standards such as NFPA 70E, ASTM, and OSHA regulations, ensuring maximum protection for users
  • Advanced Materials: OEL uses advanced materials and technologies to enhance the protective properties of their PPE, ensuring it meets the latest safety standards and provides superior protection.

Lockout/Tagout (LOTO) Procedures

  • Establishing an Electrically Safe Work Condition: Before beginning any work on electrical equipment, technicians must de-energize the equipment and follow LOTO procedures. This involves shutting off the power, locking the switch in the “off” position, and tagging it to indicate that work is being done. This ensures that the equipment cannot be inadvertently re-energized.
  • Verification of De-Energization: After applying LOTO, technicians must verify that the equipment is de-energized using testing instruments. This step is crucial to ensure that no residual voltage is present before beginning work.

Approach Boundaries and Safe Work Distances

  • Limited and Restricted Approach Boundaries: NFPA 70E defines specific approach boundaries for different voltage levels. Technicians must be aware of these boundaries and maintain safe distances from live parts unless properly equipped and authorized to enter these areas.
  • Prohibited Approach Boundary: This is the closest distance a worker can approach an exposed energized part without proper PPE. High-voltage systems have stricter boundaries, and only highly trained personnel should enter these zones.

Training and Competency

  • Electrical Safety Training: Technicians must undergo regular training on electrical safety practices as outlined by NFPA 70E. This training should cover the identification of electrical hazards, the use of PPE, LOTO procedures, and emergency response protocols.
  • Qualified Personnel: Only qualified personnel, as defined by NFPA 70E, are permitted to work on or near exposed energized parts. Technicians must demonstrate competency in the specific electrical tasks they are assigned, including understanding the risks and how to mitigate them.

The low and high voltage electrical safety training to standard NFPA 70E course run by STL USA is a wind-specific, face-to-face training program designed to equip wind technicians with the electrical safety knowledge, best work practices in electrical safety and how to apply them in real-world situations.

Head of Training at STL USA, Brandon McKelvain had this to say;

In my opinion QEW is one of, if not the most important courses for anyone working in an energized wind turbine. This should be a day one course and should be renewed at least every three years. Technicians need and deserve to fully understand the hazards they are being exposed to and what measures must be taken to do their job safely. Unfortunately, it’s still quite common for technicians and companies alike not to fully understand PPE, labels, and how to create an electrically safe work condition. At STL USA we are leveraging our many decades of wind industry experience to create content and exercises that relate to wind technicians. In our QEW LV & HV courses, technicians will put their hands on many different pieces of equipment; absence of voltage testers, load break switches, learn about DMM safety, practice dawning PPE, hang grounds, demonstrate hot-cold-hot checks using proving units, and so much more. We believe QEW training should be more than theoretical, each participant will use critical thinking to apply the knowledge they are learning throughout the training, and prove they understand the safety measures designed to get them home safe!

Arc Flash Risk Assessment

  • Arc Flash Labels: Equipment must be properly labeled to indicate the potential arc flash risk, including the incident energy level and the required PPE. Technicians must be able to read and understand these labels to take appropriate safety measures.
  • Incident Energy Calculations: Technicians should understand how incident energy is calculated and how it influences the selection of PPE and the determination of safe working distances.

Emergency Response Procedures

  • First Aid and CPR Training: Given the risks of electrical shock and arc flash, technicians should be trained in first aid and CPR to respond effectively in case of an accident.
  • Emergency Communication Plans: In remote wind farm locations, having a clear communication plan and knowing the steps for summoning emergency assistance are critical.

Conclusion

Wind technicians working with both low and high-voltage systems need to be thoroughly trained in the electrical safety standards outlined by NFPA 70E. This includes understanding electrical hazards, using appropriate PPE, following LOTO procedures, maintaining safe distances, and being prepared for emergencies. Regular training and adherence to these safety protocols are essential to ensuring the safety of personnel and the reliable operation of wind energy systems.

Learn more about our QEW training course

Click the button to learn more and book your space.

STL USA – Shortlisted for Training Team of the Year, North America

Wind technicians up a wind turbine

STL USA is delighted to have been shortlisted for this year's GWO Training Team of the Year!

The awards, first launched in 2021, shine a light on the teams and individuals who make delivery of GWO standards possible, training hundreds of thousands of wind technicians in GWO courses every year in over 50 countries worldwide.

Jakob Lau Holst, CEO of Global Wind Organisation, says: “The GWO Safety & Training Awards are one of the highlights on our calendar and I am delighted to see them back for 2024. The programme is back, bigger and better than ever before and I know that the competition from entrants will be intense.”

GWO revealed the shortlist for the 2024 Training Team of the Year award a short while ago, with STL USA one of just three in the running for the North America award. This award recognizes outstanding work by GWO training providers, celebrating distinction in all aspects of training.

Whatever the outcome, we are proud to be amongst such excellent company in the running for this year’s award. We would like to congratulate all the finalists for being shortlisted and thank them for their contributions to our industry and their ongoing commitment to keeping all our wind energy colleagues safe.

Have a watch of the video below, where our superb Training Team showcase their incomparable passion and pride for what they do.

Learn more about the team

Click the button to meet some of our amazing team.

STL USA Fall onsite GWO training program – get your site on the list?

fall onsite GWO training

Onsite visits and locations for 2024

The STL USA fall onsite GWO training program is taking shape as we plan our visits through until Christmas. 

Each year STL USA trains 100s of wind technicians onsite, as this saves employers both time and money. The schedule fills up very quickly, as compnies are keen to get their site visits booked in to take advantage of this fantastic training service, so be sure you regiaster your interest and get your site added to the program ASAP!

STL USA is acutely aware that the costs associated with sending wind technicians away from the site for extended periods for training can be inhibitive. This coupled with the reduction in manpower onsite makes our program the perfect solution. With this in mind, STL USA is now planning where we will be visiting this fall for onsite GWO training and more.

Core courses for fall onsite GWO training
  • GWO Basic Safety Training and Refreshers
  • GWO Advanced Rescue Training and Refreshers
Confirmed visits

Iowa area in early September scope for 1-2 additional site visits

West Virginia late September scope for 1-2 additional site visits

Planned

October:

Early month West Virgnia/Upstate New York 

Late month Iowa, Kansas, Oklahoma

November:

Early month California

December:

South Texas (Harlingen Location)

If you need training and your site is in or close to these regions get in touch and we can organise a visit

Why Choose STL USA for Onsite GWO Training?

Safety Technology USA is a leader in providing high-quality training due to several key factors:

  1. Expert TrainersExperienced trainers with extensive field knowledge.
  2. Convenience: Onsite training with mobile units for maximum efficiency.
  3. Proven Track Record: Over 5,000 technicians trained, including major clients like RWE, Siemens Gamesa, and GE.
  4. Comprehensive Offerings: Additional training programs such as NFPA 70E Electrical Safety training.
What else can STL USA train Onsite ?

Alongside the GWO courses mentioned above STL USA can also deliver QEW to NFPA 70E onsite and enhance the onsite visit with a number of blot-on options:

  1. 1 day QEW (Qualified Electrical Worker to NFPA 70E) Low Voltage course
  2. 1 day QEW (Qualified Electrical Worker to NFPA 70E) High Voltage course
  3. 1/2 day Rescue plan development, includes written rescue plan for a range of scenarios with video/images
  4. EAP/ERP (Emergency Action/Response Plan) site evaluation and reporting (equipment, existing plans), development of updated plan and testing of plan to include video, written documentation and live trial. 
  5. 1/2 day local first responder sessions. Intro for local first responders to the wind turbine environment

Join the onsite schedule?

Click the button and we’ll get back to you asap

ANNOUNCEMENT – STL USA partners with OEL Worldwide

STL USA is proud to announce its latest partner, OEL Worldwide

STL USA is excited to announce that we are partnering with the incomparable OEL to provide PPE equipment and arc flash clothing for our QEW NFPA 70E standard Low and High Voltage Electrical Safety Training course.

OEL Worldwide Industries is a company that specializes in manufacturing and distributing electrical safety products, including personal protective equipment (PPE) for workers exposed to electrical hazards. Their product line includes items such as arc flash protective clothing, insulated tools, and electrical safety devices. Their products are all 100% American made and of the very highest quality and they share STL USA’s core value of putting worker safety as a priority above all else.

Here are some of the key things that make OEL world-leaders in PPE provision for the wind industry.

  • Specialization: OEL Worldwide Industries focuses specifically on electrical safety, providing specialized products designed to protect workers from electrical hazards like arc flash, shock, and electrocution.
  • Expertise: Their deep knowledge and expertise in electrical safety allow them to design and produce highly effective and reliable safety gear.
  • Standards Compliance: Their products comply with rigorous safety standards such as NFPA 70E, ASTM, and OSHA regulations, ensuring maximum protection for users
  • Advanced Materials: OEL uses advanced materials and technologies to enhance the protective properties of their PPE, ensuring it meets the latest safety standards and provides superior protection.
This partnership brings together two companies that are passionate in delivering the very best in training and working safely for those in the wind sector.
We look forward to a long and very successful future working alongside OEL.

Book your NFPA 70E course

Click the button to book now.

GWO on-site training packages

GWO on-site training

A complete range of on-site training solutions for wind technicians.

As the requirements for training for increased in line with the industry growth in the USA OEM, sowners and ISPs are increasingly looking to more cost efficient models to support the development of their workforse. Onsite GWO training courses are a great way to reduce overheads but also have some clear advantages through the addition of bolt on training modules and use of the realworld environment to enhance learning objectives and better engage students.

STL USA has a long history of training onsite not just in the USA but around the world, delivering a range of training for customers including GWO, electrical safety and working with teams on rescue plans.

 

What courses are available on-site?

Safety courses are the main focus of on-site training as technical courses tend to have better learning outcomes in a more controlled environment, aside from the fact that most owners are less keen for techs to loosen bolts and play around with components in a live environment! To this end the range of courses covered by STL USA onsite includes:

  • GWO Basic Safety Training: Training includes the modules; First Aid, Fire Awareness, Manual Handling and Working at Height.
  • GWO Advanced Rescue: Hub and NAcelle, Single Hub and Nacelle for a total of 4 modules
  • Qualified Electrical Worker to standard NFPA 70E (Low and High Voltage): A Siemens approved face-to-face version of the popular electrical safety training designed specifically for wind turbine technicians.

How is on-site training delivered?

Having delivered on-site training over many years the STL USA team have arrived at the optimal training set-up for on-site delivery.

STL USA on-site training uses our custom mobile training unit which allows for both GWO Basic Safety and GWO Advanced Rescue tuition, this is supplemented by theory/classroom sessions. Obviously sites don’t have classrooms so any meeting room or similar is normally sufficient.

Alongside the mobile training unit STL USA will also use a wind turbine if available. this allows us to apply a teach and practice approach to rescue exercises. Using the controlled envirnmoent to teach the necessary skills and then going up tower to practice what has been learnt.

Technicians really value this experience as it gives them the opportunity to test the skills they have learnt in the actual environment where one day they may need to be used.

The on-site advantage

GWO on-site training brings with it a range of advantages, these include:

  1. Cost Saving: On-site dramatically reduces overheads normally associated with a 4-5 day visit to a training site, travel, car hire and accommodation are all removed when visiting techs at their home location.

  2. Safety Enhancements: Training on-site brings with it a range of safety enhancements. Including the ability to create rescue plans, live practice in a turbine and more.

  3. Real World Environment: You cannot replicate real life! The ability to practice rescues in the exact environment techs work in is invaluable. This enhances the abilit of technicians to perform rescues if/when they are ever required.

  4. Onsite Packages: STL USA have designed a range of course bolt-ons to enhance the onsite training offer, meeting a range of training needs in one site visit. 

Onsite training packages

An on-site visit is the perfect opportunity to delver a range of training to teams not just the basics. Often GWO BST and ART form the core of training but these can also be refresher courses. QEW can be added and a host more.

Additions to the core GWO courses include:

  1. 1 day QEW (Qualified Electrical Worker to NFPA 70E) Low Voltage course
  2. 1 day QEW (Qualified Electrical Worker to NFPA 70E) High Voltage course
  3. 1/2 day Rescue plan development, includes written rescue plan for a range of scenarios with video/images
  4. EAP/ERP (Emergency Action/Response Plan) site evaluation and reporting (equipment, existing plans), development of updated plan and testing of plan to include video, written documentation and live trial. 
  5. 1/2 day local first responder sessions. Intro for local first responders to the wind turbine environment

How do I make an on-site training booking?

Booking a GWO onsite training is easy. Simply click below to speak with a member of the STL USA team who can walk you through the logistics, confirm dates and provide you with everything you need to know.

Want on-site training?

Click the button to learn more

The wind industry – where are we now and what does the future look like?

The US wind industry is growing rapidly, so what do we need to consider to ensure a robust future?

The wind industry in the United States has experienced significant growth and development over the past few decades. Here is a summary of its current state:

Growth and Capacity

  • Installed Capacity: As of 2023, the U.S. has over 140 GW of installed wind power capacity. This capacity is expected to continue growing as more projects come online.
  • Annual Additions: In recent years, the U.S. has been adding around 10-12 GW of wind capacity annually. This trend is driven by both onshore and offshore wind projects.

Economic Impact

  • Job Creation: The wind industry supports over 120,000 jobs across various sectors, including manufacturing, installation, maintenance, and support services.
  • Investment: Wind energy projects attract significant investments, with billions of dollars invested annually. This includes both domestic and international investors.

Technological Advancements

  • Turbine Efficiency: Technological advancements have led to more efficient and larger turbines. The average capacity of newly installed wind turbines has increased, leading to greater energy output per turbine.
  • Grid Integration: Improvements in grid integration technologies and energy storage solutions are helping to address the intermittent nature of wind power, making it a more reliable energy source.

Policy and Regulation

  • Incentives: Federal and state incentives, such as the Production Tax Credit (PTC) and Investment Tax Credit (ITC), have been crucial in supporting the growth of the wind industry. These incentives help reduce the cost of wind projects and make them more competitive with other energy sources.
  • State Policies: Many states have set renewable portfolio standards (RPS) that require a certain percentage of energy to come from renewable sources, including wind. These state-level policies drive local demand for wind energy.

Environmental Impact

  • Emissions Reduction: Wind power plays a significant role in reducing greenhouse gas emissions. It displaces fossil fuel-based power generation, contributing to cleaner air and lower carbon footprints.
  • Land Use and Wildlife: There are ongoing efforts to minimize the impact of wind farms on wildlife and local ecosystems. This includes careful site selection and technology to reduce bird and bat fatalities.

Challenges

  • Intermittency: The intermittent nature of wind energy remains a challenge. However, advances in energy storage and grid management are mitigating these issues.
  • Supply Chain: The wind industry faces supply chain challenges, including the sourcing of materials and components. The growth of the industry depends on a robust and resilient supply chain.
  • Community Acceptance: Gaining community acceptance for wind projects, especially in populated or scenic areas, can be challenging. Engagement and communication with local communities are essential for project success.

Overall, the wind industry in the U.S. is in a strong position with continued growth and development expected in the coming years. Investments in technology, supportive policies, and increased capacity are driving the industry towards a significant role in the nation’s energy mix.

The lack of wind technicians in the USA poses several significant issues for the wind energy industry. Here are the primary challenges and impacts associated with this shortage:

Key Issues

  1. Maintenance and Reliability
    • Increased Downtime: Without sufficient technicians, routine maintenance and repairs can be delayed, leading to increased downtime for wind turbines. This reduces the overall efficiency and reliability of wind farms.
    • Risk of Damage: Delays in addressing minor issues can lead to more significant damage over time, increasing repair costs and potential safety hazards.
  2. Economic Impact
    • Higher Costs: The shortage of technicians can drive up labor costs as companies compete for a limited pool of qualified workers. This can increase the overall cost of wind energy production.
    • Delayed Projects: The lack of available technicians can delay the commissioning of new wind projects, impacting timelines and potentially leading to financial losses for developers.
  3. Safety Concerns
    • Overworked Technicians: Existing technicians may be overworked due to high demand, leading to fatigue and increased risk of accidents. Ensuring the safety of workers is a critical concern in the industry.
    • Quality of Training: In an effort to fill positions quickly, there might be a temptation to reduce training duration or quality, which can compromise safety and effectiveness.
  4. Growth and Expansion
    • Stalled Development: The expansion of wind farms may be hindered by the lack of technicians, as developers might be hesitant to invest in new projects without a reliable workforce to maintain them.
    • Impact on Targets: National and state renewable energy targets could be jeopardized if the growth of wind energy is slowed due to labor shortages.
  5. Regional Disparities
    • Rural Challenges: Many wind farms are located in rural areas where it is more difficult to attract and retain skilled workers. This exacerbates the technician shortage in these regions.
    • Training Accessibility: Access to quality training programs might be limited in certain areas, making it harder for local communities to supply the needed workforce.

Addressing the Shortage

  1. Education and Training Programs
    • Expand Programs: Increasing the number of wind technician training programs at technical schools and community colleges can help meet demand.
    • Partnerships: Collaboration between the wind industry and educational institutions can ensure that training programs align with industry needs and standards.
  2. Attracting Talent
    • Awareness Campaigns: Promoting the benefits and opportunities of a career as a wind technician can attract new talent to the field.
    • Incentives: Offering competitive salaries, benefits, and career advancement opportunities can make the profession more attractive.
  3. Retention Strategies
    • Work-Life Balance: Implementing policies that support work-life balance can help retain existing technicians and reduce turnover.
    • Continuing Education: Providing ongoing training and professional development opportunities can enhance job satisfaction and retention.
  4. Utilizing Technology
    • Remote Monitoring: Advances in remote monitoring and predictive maintenance technologies can reduce the physical demand on technicians and optimize their use.
    • Automation: Incorporating automated systems for routine inspections and minor repairs can alleviate some of the burdens on human technicians.
  5. Policy Support
    • Government Initiatives: Federal and state governments can support workforce development initiatives, including funding for training programs and incentives for hiring and retaining technicians.
    • Regulatory Support: Streamlining certification and licensing processes for wind technicians can make it easier to enter and progress in the field.

By addressing these issues through targeted strategies and investments, the wind industry can mitigate the technician shortage and continue its growth trajectory, contributing to a more sustainable energy future.

We asked one of our value clients for their thoughts.

“I’m quite confident in the short term of the wind industry (20 – 30 years) however long term is to be determined.  I believe wind will always have a place in the energy sector however new technologies are always being explored and maybe the next generation will call for something different, as we did from the coal generation.  My father spent his career building coal fired power plants and they were the energy heroes of the day, especially during the energy crises.  People are always looking for new and improved ways to be more ecofriendly and energy efficient and want to be part of change.  I’m excited where we go from here as maybe we are the steppingstone to the next big thing.”

The STL USA view

We’re excited for the future of wind in the USA. However, we as an industry, especially in the short term, need to do much more to attract the committed skilled workers the sector will need to flourish over the coming years. The industry hasn’t historically done a great job of promoting the careers on offer, it’s led to a supply/demand imbalance in terms of workforce and is perhaps one reason why salaries on offer are so high. Despite this however it’s a great industry to get into, with stable jobs, advancement opportunity, and a bright future. STL USA are committed to playing are part to attract the next generation of wind technicians with programs like WindStart and we’re excited to see what the future brings.

Want to Get Into Wind?

Click the button to learn more

The future of wind – why GWO certification is just the start.

GWO certification for safety

GWO training providers are increasing in number rapidly. But GWO certification is just the start?

GWO (Global Wind Organisation) certification refers to a set of standardized training programs and certificates designed for professionals working in the wind energy industry. The certification is provided by the Global Wind Organisation, an industry-led body established by wind turbine manufacturers and owners to ensure a safe work environment and set a global standard for safety and technical training. Numerous training and education companies provide GWO Training Courses that meet the training standards, STL USA is one such provider.

Key Components of GWO Certification:
  1. Basic Safety Training (BST):
    • First Aid: Training in emergency response and first aid specific to the wind industry.
    • Manual Handling: Techniques for safe manual handling of loads to prevent injuries.
    • Fire Awareness: Training to handle fire-related incidents and use firefighting equipment.
    • Working at Heights: Safety measures and practices for working at heights, including use of fall protection equipment.
    • Sea Survival: (Optional) Training for offshore wind turbine technicians, covering survival at sea and transfer techniques.
  2. Basic Technical Training (BTT):
    • Covers bolt tightening, mechanical, electrical, and hydraulic systems in wind turbines.
    • Aimed at technicians who are new to the wind industry and need to understand the technical aspects of wind turbines.
  3. Advanced Rescue Training (ART):
    • More specialized safety training for those who need advanced knowledge and skills.
    • Includes modules like hub and nacelle rescue and signgle rescuer options

Purpose and Benefits:

  • Safety: Ensures that all personnel working in the wind industry are trained to a high safety standard, reducing the risk of accidents and injuries.
  • Standardization: Provides a consistent training standard recognized globally, facilitating easier mobility of workers across different projects and regions.
  • Compliance: Helps companies comply with regulatory and safety requirements in various countries.
  • Efficiency: Improves the efficiency and effectiveness of wind energy projects by ensuring that workers are well-prepared for the technical and safety challenges they might face.

GWO certification is highly regarded in the wind energy sector and is often a prerequisite for employment in various roles within the industry.

While GWO accreditation is highly valuable and essential for working safely in the wind energy industry, it is not sufficient on its own for a few reasons. Additional training, certifications, and skills are often required to fully prepare individuals for the complexities of working on wind turbines. Here’s why:

1. Technical Expertise:
  • Specialized Skills: Working on wind turbines requires specific technical knowledge and skills that go beyond basic safety and technical training. This includes understanding the mechanical, electrical, and hydraulic systems unique to different turbine models.
  • Manufacturer-Specific Training: Many turbine manufacturers provide specialized training for their specific models, which is necessary to understand the nuances and proprietary technology of their equipment.
2. Experience and Practical Training:
  • Hands-On Experience: GWO training includes practical components, but actual field experience is crucial for developing the proficiency needed to handle real-world scenarios and unexpected issues that may arise during maintenance and repair work.
  • On-the-Job Training: Working under the supervision of experienced technicians and engineers helps new workers apply their training in real-world settings, which is critical for building competence and confidence.
3. Advanced and Specialized Certifications:
  • Further Certifications: There are additional certifications and training programs beyond GWO that may be required, such as high voltage safety, rope access techniques (IRATA/SPRAT), and advanced rescue operations.
  • Professional Licenses: In some regions, specific professional licenses or certifications may be required to perform certain tasks or to comply with local regulations.
4. Regulatory and Company-Specific Requirements:
  • Compliance with Local Regulations: Different countries and regions may have their own safety and technical training requirements that go beyond GWO standards. Workers need to be aware of and comply with these local regulations.
  • Company-Specific Training: Individual companies may have their own training programs and safety protocols that workers need to follow, which can include company-specific emergency procedures, operational guidelines, and additional safety measures.
5. Continuing Education and Skill Development:
  • Ongoing Learning: The wind energy industry is constantly evolving, with new technologies and best practices emerging regularly. Continuous professional development and staying updated with the latest advancements are crucial.
  • Advanced Technical Skills: As technology evolves, workers may need to acquire advanced technical skills, such as familiarity with SCADA systems, data analysis, and remote monitoring technologies.
6. Soft Skills and Team Coordination:
  • Communication Skills: Effective communication is essential for coordinating with team members, especially in complex and potentially hazardous environments.
  • Problem-Solving and Decision-Making: Working on wind turbines often requires quick thinking and problem-solving abilities to address unexpected challenges safely and efficiently.
7. Health and Fitness:
  • Physical Demands: The job can be physically demanding, requiring a good level of fitness and the ability to work at heights and in various weather conditions. Regular health and fitness assessments may be necessary to ensure workers can meet these demands safely.

In conclusion, while GWO accreditation provides a critical foundation in safety and basic technical skills, it must be complemented by additional training, experience, certifications, and compliance with local regulations and company-specific requirements to fully prepare individuals for the comprehensive demands of working on wind turbines.

Here’s STL USA’s Training Manager, Brandon McKelvain’s view on the current landscape around GWO accreditations –

“The strength of the GWO accreditations is in basic safety and rescue training. The standards are laid out in a simple consistent method. The Taxonomy Framework is excellent for developing content and courses. The “generic approach” found in GWO standards is very effective for introducing participants to a verity of PPE and rescue kits.

However, the depth of basic technical is insufficient and the certification being enduring presents a problem for improvements. More advanced technical knowledge, skills, and abilities are essential for wind technicians before entering the field and unfortunately this isn’t happening.

In addition to GWO accreditations, I think the ACP’s Micro Credentials are an excellent step in the right direction. We’ve made it a point to start integrating these into our training courses. In doing so, technicians know how to apply their skills, which is essential for technicians.”

Interested in learning more about our courses?

Click the button to learn more

WindStart for employers – Hiring new wind technicians

Hiring new wind technicians

HIRING AND TRAINING FOR EMPLOYERS

Hiring new wind technicians is one of the biggest challenges we face in the USA both now and into the future. There is huge growth potential in the wind industry but to achieve it we need to dramatically expand the workforce.

Unfortunately hiring new wind technicians is also time consuming and expensive. Firstly there is the recruitment process then the new employee needs to be trained not only to do the job but also they need to gain industry certification – GWO being the main accreditation. Added together and the cost of a new hire at the start of their career is significant, $10’s of thousands of dollars.

So how do we solve this, how do we create a flow of new people who will stay the course with wind, train them and do it all for a budget that makes sense?

WindStart for Employers

STL USA has created the WindStart program to address these challenges head-on.

WindStart for employers is both a hiring and training solution combined. The program is designed to filter out the best students, train them and give them the core certification required by the wind industry. As a solution is saves employers time and money.

WindStart allows employers to streamline their new hire process, reducing fees, admin and risk. 

The WindStart Training Program

The perfect entry point to the wind industry

STL USA specializes in teaching new and experienced wind technicians across a variety of disciplines and accreditations. This includes a complete range of GWO accreditations (the industry standard), Qualified Electrical Worker to NFPA 70E and a full spectrum of introductory and intermediate technical courses across all aspects of the common platforms (GE, Siemens, Vestas etc)

STL USA has built a reputation for training excellence and quality. That’s why companies like GE and Siemens trust STL USA to deliver on training.

 

How does it work

From an employers perspective it’s super simple.

The employer sign-up process simply needs to define how many new hires are required and over what time period alongside any educational requirements and soft skills. 

STL USA then do the rest, including:

  • Managing a 3-step process which includes a written application, face to face interview and screening
  • Students who pass this are then enrolled onto the training program
  • Once students graduate STL USA then places students into the roles the employer has committed to the program

Costs

WindStart is designed to be cost efficient for employers, cutting down on hiring expenses, admin, training costs and more.

The base fee for employers is $9,000 per role. This includes the entire search, selection application process and 4 weeks training. Training includes over $10,000 of industry accreditation – GWO Basic Safety, GWO Basic Technical, GWO Advanced Rescue, QEW – NFPA 70E and a week long technical intro to wind.

 

The benefits of WindStart are clear. For more information click the link below.

 

Learn more

Click the button to learn more

Specialized GWO and skills training courses from STL USA

Crane and Hoist, Slinger Signaller courses available

NEW FOR 2024 - GWO, SKILLS & COMPETENCY COURSES

This year, STL USA have added a number of new, more specialized courses to our roster to help boost skills and comptency training for Wind Technicians outside of the standard GWO accreditation requirements. Below is a quick overview of each course, either click the button at the bottom of the page to learn more or drop us an email at info@safetytechnologyusa.com for more information.

GWO Lift & 3S CAS?

The GWO lift course ensures participants learn to take responsibility to support and care for themselves and others while operating and working on a lift in the wind industry.

Add a 3S Climb Auto System cert to the GWO training or take this as a stand alone course.

The WindStart Program

The perfect entry point to the wind industry

STL USA specializes in teaching new and experienced wind technicians across a variety of disciplines and accreditations. This includes a complete range of GWO accreditations (the industry standard), NFPA 70E electrical safety training and a full spectrum of introductory and intermediate technical courses across all aspects of the common platforms (GE, Siemens, Vestas etc)

Why Windstart and the wind industry?

The wind sector is growing quickly across the USA as the nation looks to diversify its energy sources. Initiatives like the Inflation Reduction Act are providing significant funding for wind projects and all this against a backdrop of an industry crying out for new workers. WindStart puts employees in pole position to be hired onto high paying jobs.

  • Wind salaries are way above national averages
  • Renewable energy will need 500,000 plus new workers by 2030
  • Projects continue to launch at pace, the industry is desperate for new talent
  • WindStart provides all the standard accreditations wind tech’s need to get straight to work

Confined Space Awareness

Designed for those individuals who are responsible for managing and overseeing employees working in confined space activities.

Gearbox & Borescope

STL USA’s Gearbox & Borescope Overview course is a 3-day training course designed to introduce the wind turbine gearbox and the use of a Borescope. The course covers gearbox fundamentals, the use and management of the borescope as a diagnosis tool, and troubleshooting basics across a range of scenarios. 

Course attendees will get hands-on with a turbine gearbox and borescope through the course alongside theory modules. This course is run in partnership with Evident Scientific the leader in borescope technology.

GWO Slinger Signaller

GWO’s slinger signaller training course teaches participants how to conduct slinging techniques and signaling during simple lifting operations specific to the wind industry, meaning lifts conducted based on a lifting plan or covering known hazards.

Single module course

1.5 days duration

GWO Crane & Hoist

GWO’s Crane & Hoist training course teaches participants the ability to take responsibility as a basic user to safely operate, inspect and maintain common types of fixed cranes and hoists in WTG environment on basic lifts while following manufactures’ manuals and relevant documentation and legislation. The course is split into two modules, each 1.5 days in duration

Crane & Hoist user

1.5 days duration 

Crane & Hoist inspection and maintenance

1.5 days duration

Learn more

Click the button to learn more